Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.836
Filtrar
1.
Clin Nutr ESPEN ; 60: 139-145, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479902

RESUMO

OBJECTIVE: Evaluate the influence of the BsmI polymorphism of the vitamin D receptor gene on vitamin D levels, and inflammatory and oxidative stress markers in patients with Cystic Fibrosis supplemented with cholecalciferol megadose. METHODS: We performed a single-arm, non-randomized pre- and post-study of 17 patients aged 5 to 20 years with cystic fibrosis diagnosed with vitamin D insufficiency/deficiency 25-hydroxy vitamin< 30 ng/mL. Individuals were genotyped for the BsmI polymorphism of the vitamin D receptor gene and all received cholecalciferol supplementation of 4,000 IU daily for children aged 5 to 10 years and 10,000 IU for children over 10 years of age for 8 weeks. Interviews were conducted with personal data, sun exposure, anthropometric and blood samples of 25-hydroxy vitamin parathormone, serum calcium, ultrasensitive C-reactive protein, alpha 1 acid glycoprotein, total antioxidant capacity, malondialdehyde and kidney and liver function. Inter- and intra-group assessment was assessed by paired t-test Anova test or its non-parametric counterparts. RESULTS: The individuals were mostly male and reported no adverse effects from the use of supplementation, 64 % had 25-hydroxy vitamin levels >30 ng/mL. Patients with BB and Bb genotypes showed increased serum levels of 25-hydroxy vitamin. The group with BB genotype showed a reduction in alpha 1 acid glycoprotein. And individuals with the bb genotype had high levels of malondialdehyde compared to the pre-intervention time. CONCLUSION: It is concluded that variations of the BsmI polymorphism of the vitamin D receptor gene have different responses in vitamin D levels and markers of inflammation and oxidative stress.


Assuntos
Fibrose Cística , Deficiência de Vitamina D , Criança , Feminino , Humanos , Masculino , Colecalciferol , Fibrose Cística/genética , Suplementos Nutricionais , Malondialdeído , Orosomucoide/metabolismo , Estresse Oxidativo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D , Deficiência de Vitamina D/genética , Vitaminas , Pré-Escolar , Adolescente , Adulto Jovem
2.
Biochem Biophys Res Commun ; 705: 149736, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447392

RESUMO

BACKGROUND: Orosomucoid (ORM) has been reported as a biomarker of carotid atherosclerosis, but the role of ORM 2, a subtype of ORM, in carotid atherosclerotic plaque formation and the underlying mechanism have not been established. METHODS: Plasma was collected from patients with carotid artery stenosis (CAS) and healthy participants and assessed using mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) technology to identify differentially expressed proteins. The key proteins and related pathways were identified via western blotting, immunohistochemistry, and polymerase chain reaction of carotid artery plaque tissues and in vitro experiments involving vascular smooth muscle cells (VSMCs). RESULTS: We screened 33 differentially expressed proteins out of 535 proteins in the plasma. Seventeen proteins showed increased expressions in the CAS groups relative to the healthy groups, while 16 proteins showed decreased expressions during iTRAQ and bioinformatic analysis. The reactive oxygen species metabolic process was the most common enrichment pathway identified by Gene Ontology analysis, while ORM2, PRDX2, GPX3, HP, HBB, ANXA5, PFN1, CFL1, and S100A11 were key proteins identified by STRING and MCODE analysis. ORM2 showed increased expression in patients with CAS plaques, and ORM2 was accumulated in smooth muscle cells. Oleic acid increased the lipid accumulation and ORM2 and PRDX6 expressions in the VSMCs. The recombinant-ORM2 also increased the lipid accumulation and reactive oxygen species (ROS) in the VSMCs. The expressions of ORM2 and PRDX-6 were correlated, and MJ33 (an inhibitor of PRDX6-PLA2) decreased ROS production and lipid accumulation in VSMCs. CONCLUSION: ORM2 may be a biomarker for CAS; it induced lipid accumulation and ROS production in VSMCs during atherosclerosis plaque formation. However, the relationships between ORM2 and PRDX-6 underlying lipid accumulation-induced plaque vulnerability require further research.


Assuntos
Aterosclerose , Estenose das Carótidas , Placa Aterosclerótica , Humanos , Estenose das Carótidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Orosomucoide/metabolismo , Músculo Liso Vascular/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo , Miócitos de Músculo Liso/metabolismo , Lipídeos , Profilinas/metabolismo
3.
Biol Pharm Bull ; 47(2): 389-393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325827

RESUMO

It was recently reported that the dexmedetomidine concentration within the extracorporeal circuit decreases with co-administration of midazolam. In this study, we investigated whether displacement of dexmedetomidine by midazolam from the binding site of major plasma proteins, human serum albumin (HSA) and α1-acid glycoprotein (AAG), would increase levels of free dexmedetomidine that could be adsorbed to the circuit. Equilibrium dialysis experiments indicated that dexmedetomidine binds to a single site on both HSA and AAG with four times greater affinity than midazolam. Midazolam-mediated inhibition of the binding of dexmedetomidine to HSA and AAG was also examined. The binding of dexmedetomidine to these proteins decreased in the presence of midazolam. Competitive binding experiments suggested that the inhibition of binding by midazolam was due to competitive displacement at site II of HSA and due to non-competitive displacement at the site of AAG. Thus, our present data indicate that free dexmedetomidine displaced by midazolam from site II of HSA or from AAG is adsorbed onto extracorporeal circuits, resulting in a change in the dexmedetomidine concentration within the circuit.


Assuntos
Dexmedetomidina , Midazolam , Humanos , Ligação Proteica/fisiologia , Dexmedetomidina/farmacologia , Proteínas Sanguíneas/metabolismo , Orosomucoide/metabolismo , Albumina Sérica Humana/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396823

RESUMO

Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE had excellent thromboprophylaxis and inhibition of platelet aggregation. This study aimed to investigate the effect of AEE on the liver of thrombosed rats to reveal its mechanism of thromboprophylaxis. Therefore, a multi-omics approach was used to analyze the liver. Transcriptome results showed 132 differentially expressed genes (DEGs) in the AEE group compared to the model group. Proteome results showed that 159 differentially expressed proteins (DEPs) were identified in the AEE group compared to the model group. Six proteins including fibrinogen alpha chain (Fga), fibrinogen gamma chain (Fgg), fibrinogen beta chain (Fgb), orosomucoid 1 (Orm1), hemopexin (Hpx), and kininogen-2 (Kng2) were selected for parallel reaction monitoring (PRM) analysis. The results showed that the expression of all six proteins was upregulated in the model group compared with the control group. In turn, AEE reversed the upregulation trend of these proteins to some degree. Metabolome results showed that 17 metabolites were upregulated and 38 were downregulated in the model group compared to the control group. AEE could reverse the expression of these metabolites to some degree and make them back to normal levels. The metabolites were mainly involved in metabolic pathways, including linoleic acid metabolism, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. Comprehensive analyses showed that AEE could prevent thrombosis by inhibiting platelet activation, decreasing inflammation, and regulating amino acid and energy metabolism. In conclusion, AEE can have a positive effect on thrombosis-related diseases.


Assuntos
Aspirina/análogos & derivados , Eugenol/análogos & derivados , Trombose , Tromboembolia Venosa , Ratos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Anticoagulantes/farmacologia , Multiômica , Tromboembolia Venosa/tratamento farmacológico , Aspirina/uso terapêutico , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Trombose/metabolismo , Fígado/metabolismo , Fibrinogênio/metabolismo , Orosomucoide/metabolismo
5.
Diabetes ; 73(5): 701-712, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320268

RESUMO

Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction.


Assuntos
Ácidos e Sais Biliares , Orosomucoide , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
6.
Cytokine ; 176: 156503, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38301358

RESUMO

Orosomucoid, or alpha-1 acid glycoprotein (AGP), is a major acute-phase protein expressed in response to systemic injury and inflammation. AGP has been described as an inhibitor of neutrophil migration on sepsis, particularly its immunomodulation effects. AGP's biological functions in coronavirus disease 2019 (COVID-19) are not understood. We sought to investigate the role of AGP in severe COVID-19 infection patients and neutrophils infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Epidemiological data, AGP levels, and other laboratory parameters were measured in blood samples from 56 subjects hospitalized in the ICU with SARS-CoV-2 infection. To evaluate the role of AGP in NETosis in neutrophils, blood samples from health patients were collected, and neutrophils were separated and infected with SARS-CoV-2. Those neutrophils were treated with AGP or vehicle, and NETosis was analyzed by flow cytometry. AGP was upregulated in severe COVID-19 patients (p<0.05). AGP level was positively correlated with IL-6 and C-reactive protein (respectively, p=0.005, p=0.002) and negatively correlated with lactate (p=0.004). AGP treatment downregulated early and late NETosis (respectively, 35.7% and 43.5%) in neutrophils infected with SARS-CoV-2 and up-regulated IL-6 supernatant culture expression (p<0.0001). Our data showed increased AGP in COVID-19 infection and contributed to NETosis regulation and increased IL-6 production, possibly related to the Cytokine storm in COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , Neutrófilos/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacologia , SARS-CoV-2 , Interleucina-6/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Imunoproteínas/metabolismo
7.
Am J Vet Res ; 85(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939491

RESUMO

OBJECTIVE: This study aimed to investigate the expression of acute phase proteins and plasma cytokines in cats with various tumor types and varying metastatic statuses. ANIMALS: 5 clinically healthy cats and 22 cats with neoplastic disease that underwent CT imaging before treatment were enrolled. Patients were grouped based on their tumor types and metastatic status. METHODS: Blood samples were collected from all cats for general blood analyses before they underwent CT imaging. The remaining plasma sample was frozen for subsequent alpha 1-acid glycoprotein (AGP), serum amyloid A (SAA), and feline cytokine panel measurements. These results were compared with those of healthy cats as well as between metastatic status and tumor types. RESULTS: Only 4 cats (18%) exhibited elevated SAA levels, whereas 16 (73%) showed elevated AGP levels. AGP was significantly increased in cats with tumors (P = .016), while SAA was not. Only IL-8 showed a significant difference (P = .002) between cats with primary tumors and those with radiologically suspected tumor metastasis. CLINICAL RELEVANCE: While AGP is a more prominent biomarker than SAA in cats with tumors, a significant elevation of AGP and SAA levels in association with metastasis and specific tumor types could not be identified. Alternatively, further investigation is warranted to evaluate the potential significance of IL-8 in tumor progression and metastasis.


Assuntos
Doenças do Gato , Neoplasias , Humanos , Gatos , Animais , Orosomucoide/análise , Orosomucoide/metabolismo , Interleucina-8 , Proteína Amiloide A Sérica/análise , Proteína Amiloide A Sérica/metabolismo , Biomarcadores , Neoplasias/veterinária
8.
Br J Nutr ; 131(3): 482-488, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-37694547

RESUMO

Retinol binding protein (RBP) is used as a proxy for retinol in population-based assessments of vitamin A deficiency (VAD) for cost-effectiveness and feasibility. When the cut-off of < 0·7 µmol/l for retinol is applied to RBP to define VAD, an equivalence of the two biomarkers is assumed. Evidence suggests that the relationship between retinol and RBP is not 1:1, particularly in populations with a high burden of infection or inflammation. The goal of this analysis was to longitudinally evaluate the retinol:RBP ratio over 1 month of follow-up among fifty-two individuals exposed to norovirus (n 26 infected, n 26 uninfected), test whether inflammation (measured as α-1-acid glycoprotein (AGP) and C-reactive protein (CRP)) affects retinol, RBP and the ratio between the two and assess whether adjusting vitamin A biomarkers for AGP or CRP improves the equivalence of retinol and RBP. We found that the median molar ratio between retinol and RBP was the same among infected (0·68) and uninfected (0·68) individuals. AGP was associated with the ratio and RBP individually, controlling for CRP, and CRP was associated with both retinol and RBP individually, controlling for AGP over 1 month of follow-up. Adjusting for inflammation led to a slight increase in the ratio among infected individuals (0·71) but remained significantly different from the expected value of one. These findings highlight the need for updated recommendations from the WHO on a cut-off value for RBP and an appropriate method for measuring and adjusting for inflammation when using RBP in population assessments of VAD.


Assuntos
Norovirus , Deficiência de Vitamina A , Humanos , Vitamina A , Proteína C-Reativa/análise , Orosomucoide/metabolismo , Biomarcadores , Deficiência de Vitamina A/epidemiologia , Proteínas de Ligação ao Retinol/metabolismo , Inflamação , Norovirus/metabolismo
9.
Proteins ; 92(2): 246-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837263

RESUMO

α-1 acid glycoprotein (AGP) is one of the most abundant plasma proteins. It fulfills two important functions: immunomodulation, and binding to various drugs and receptors. These different functions are closely associated and modulated via changes in glycosylation and cancer missense mutations. From a structural point of view, glycans alter the local biophysical properties of the protein leading to a diverse ligand-binding spectrum. However, glycans can typically not be observed in the resolved X-ray crystallography structure of AGP due to their high flexibility and microheterogeneity, so limiting our understanding of AGP's conformational dynamics 70 years after its discovery. We here investigate how mutations and glycosylation interfere with AGP's conformational dynamics changing its biophysical behavior, by using molecular dynamics (MD) simulations and sequence-based dynamics predictions. The MD trajectories show that glycosylation decreases the local backbone flexibility of AGP and increases the flexibility of distant regions through allosteric effects. We observe that mutations near the glycosylation site affect glycan's conformational preferences. Thus, we conclude that mutations control glycan dynamics which modulates the protein's backbone flexibility directly affecting its accessibility. These findings may assist in the drug design targeting AGP's glycosylation and mutations in cancer.


Assuntos
Neoplasias , Orosomucoide , Humanos , Glicosilação , Orosomucoide/genética , Orosomucoide/química , Orosomucoide/metabolismo , Conformação Molecular , Polissacarídeos , Neoplasias/genética
10.
BMC Nephrol ; 24(1): 357, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049745

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, which has been a major cause of end-stage renal failure. Diagnosing diabetic kidney disease is important to prevent long-term kidney damage and determine the prognosis of patients with diabetes. In this study, we investigated the clinical significance of combined detection of urine orosomucoid and retinol-binding protein for early diagnosis of diabetic kidney disease. METHODS: We recruited 72 newly diagnosed patients with type 2 diabetes and 34 healthy persons from August 2016 to July 2018 at the First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital). Using the Mogensen grading criteria, participants were classified as having diabetes or diabetic kidney disease, and healthy persons constituted the control group. Urine orosomucoid and retinol-binding protein levels were measured and correlated with other variables. RESULTS: With the aggravation of renal damage, the level of urinary mucoid protein gradually increased. Urinary retinol-binding protein and microalbumin levels were significantly higher in the diabetes group than in control and nephropathy groups. Orosomucoid and retinol-binding protein might be independent risk factors for diabetes and diabetic kidney disease. Urinary orosomucoid significantly correlated with retinol-binding protein and microalbumin levels in the diabetic kidney disease group. CONCLUSION: Elevated urine orosomucoid and retinol-binding protein levels can be detected in the early stages of type 2 diabetic kidney disease. Both of these markers are important for diabetic kidney disease detection and early treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Orosomucoide/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Rim , Proteínas de Ligação ao Retinol/urina , Biomarcadores
11.
New Phytol ; 240(3): 1134-1148, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606093

RESUMO

Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Orosomucoide/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Cell Rep ; 42(7): 112697, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37355990

RESUMO

The therapeutic administration of recombinant proteins is utilized in a multitude of research studies for treating various diseases. In this study, we investigate the therapeutic potential of Orosomucoid 2 (Orm2), an acute phase protein predominantly secreted by hepatocytes, for treating non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Our results show that high Orm2 expression prevents high-fat-diet (HFD)-induced obesity in mice. Pharmacological administration of recombinant ORM2 protein ameliorates hepatic steatosis, inflammation, hepatocyte injury, and fibrosis in mouse livers afflicted by NAFLD and NASH under dietary stress. Orm2 knockout mice develop spontaneous obesity under a regular diet and exacerbate HFD-induced steatosis, steatohepatitis, and fibrosis. Mechanistically, Orm2 deletion activates the Erk1/2-PPARγ-Cd36 signaling pathway, increasing fatty acid uptake and absorption in hepatocytes and mice. Overall, our findings underscore the critical role of Orm2 in preventing NASH and associated NAFLD in the context of obesity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Orosomucoide/metabolismo , Proteínas de Fase Aguda , Hepatócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Fibrose , Obesidade/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
J Mol Recognit ; 36(7): e3027, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189259

RESUMO

α1 -Acid glycoprotein (AGP) is a prominent acute phase component of blood plasma and extravascular fluids. As a member of the immunocalins, AGP exerts protective effects against Gram-negative bacterial infections but the underlying molecular mechanisms still need to be elucidated. Notably, the chemical structures of phenothiazine, phenoxazine and acridine type ligands of AGP are similar to those of phenazine compounds excreted by the opportunistic human pathogen Pseudomonas aeruginosa and related bacterial species. These molecules, like pyocyanin, act as quorum sensing-associated virulence factors and are important contributors to bacterial biofilm formation and host colonisation. Molecular docking simulations revealed that these agents fit into the multi-lobed cavity of AGP. The binding site is decorated by several aromatic residues which seem to be essential for molecular recognition of the ligands allowing multifold π-π and CH-π interactions. The estimated affinity constants (~105 M-1 ) predict that these secondary metabolites could be trapped inside the ß-barrel of AGP which in turn could reduce their cytotoxic effects and disrupt the microbial QS network, facilitating the eradication of bacterial infections.


Assuntos
Biofilmes , Percepção de Quorum , Humanos , Simulação de Acoplamento Molecular , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Ligantes , Antibacterianos/farmacologia , Fenazinas , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo
14.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239819

RESUMO

Human serum alpha-1 acid glycoprotein is an acute-phase plasma protein involved in the binding and transport of many drugs, especially basic and lipophilic substances. It has been reported that the sialic acid groups that terminate the N-glycan chains of alpha-1 acid glycoprotein change in response to certain health conditions and may have a major impact on drug binding to alpha-1 acid glycoprotein. The interaction between native or desialylated alpha-1 acid glycoprotein and four representative drugs-clindamycin, diltiazem, lidocaine, and warfarin-was quantitatively evaluated using isothermal titration calorimetry. The calorimetry assay used here is a convenient and widely used approach to directly measure the amount of heat released or absorbed during the association processes of biomolecules in solution and to quantitatively estimate the thermodynamics of the interaction. The results showed that the binding of drugs with alpha-1 acid glycoprotein were enthalpy-driven exothermic interactions, and the binding affinity was in the range of 10-5-10-6 M. Desialylated alpha-1 acid glycoprotein showed significantly different binding with diltiazem, lidocaine, and warfarin compared with native alpha-1 acid glycoprotein, whereas clindamycin showed no significant difference. Therefore, a different degree of sialylation may result in different binding affinities, and the clinical significance of changes in sialylation or glycosylation of alpha-1 acid glycoprotein in general should not be neglected.


Assuntos
Clindamicina , Varfarina , Humanos , Ligação Proteica , Varfarina/farmacologia , Diltiazem , Calorimetria/métodos , Orosomucoide/metabolismo , Termodinâmica , Interações Medicamentosas
15.
Paediatr Anaesth ; 33(7): 571-576, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067078

RESUMO

BACKGROUND: Alpha-1-acid glycoprotein is an acute-phase protein with a high affinity for amide local anesthetics. Compared to adults, neonates have lower concentrations of this glycoprotein in plasma, and are therefore at higher risk of developing local anesthetic toxicity. Alpha-1-acid glycoprotein concentrations rise in adults after surgery as a response to stress as well as in inflammatory conditions. Previous studies have shown that concentrations of alpha-1-acid-glycoprotein in neonates vary postpartum, influenced by gestational age and mode of delivery. AIM: This study aims to determine the concentrations of alpha-1-acid glycoprotein pre- and postoperatively in neonates undergoing major surgery. This information is important for determining safe and effective dosage of local anesthetic in this vulnerable group of patients. METHODS: In this prospective observational study, 25 neonates (median 3 days of age) undergoing major surgery were included. Blood sampling was performed preoperatively and at four occasions postoperatively. Alpha-1-acid-glycoprotein plasma concentrations were analyzed using an immunoturbidimetric assay. Mann-Whitney U test, Kruskal-Wallis and Spearman ranking correlation test were used for the statistical analysis. RESULTS: Higher plasma concentrations of alpha-1-acid-glycoprotein were found 48 h postoperatively compared to preoperatively [median (inter-quartile range) 0.815 g L-1 (0.663-0.983 g L-1 ) vs. 0.300 g L-1 (0.205-0.480 g L-1 p < 0.001)], respectively. It was not possible to detect any influence of sex, postnatal age, gestational age, or delivery mode on alpha-1-acid-glycoprotein concentrations in our data. CONCLUSIONS: Alpha-1-acid-glycoprotein concentrations increase in neonates as a response to surgery regardless of gestational age, sex, or mode of delivery.


Assuntos
Anestésicos Locais , Orosomucoide , Recém-Nascido , Adulto , Feminino , Humanos , Orosomucoide/metabolismo , Idade Gestacional , Estudos Prospectivos
16.
Xenobiotica ; 53(1): 12-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36803165

RESUMO

Plasma protein binding (PPB) studies on the SARS-CoV-2 main protease inhibitor nirmatrelvir revealed considerable species differences primarily in dog and rabbit, which prompted further investigations into the biochemical basis for these differences.The unbound fraction (fu) of nirmatrelvir in dog and rabbit plasma was concentration (2-200 µM)-dependent (dog fu,p 0.024-0.69, rabbit fu,p 0.010-0.82). Concentration (0.1-100 µM)-dependent binding in serum albumin (SA) (fu,SA 0.040-0.82) and alpha-1-acid glycoprotein (AAG) (fu,AAG 0.050-0.64) was observed in dogs. Nirmatrelvir showed minimal binding to rabbit SA (1-100 µM: fu,SA 0.70-0.79), while binding to rabbit AAG was concentration-dependent (0.1-100 µM: fu,AAG 0.024-0.66). In contrast, nirmatrelvir (2 µM) revealed minimal binding (fu,AAG 0.79-0.88) to AAG from rat and monkeys. Nirmatrelvir showed minimal-to-moderate binding to SA (1-100 µM; fu,SA 0.70-1.0) and AAG (0.1-100 µM; fu,AAG 0.48-0.58) from humans across tested concentrations.Nirmatrelvir molecular docking studies using published crystal structures and homology models of human and preclinical species SA and AAG were used to rationalise the species differences to plasma proteins. This suggested that species differences in PPB are primarily driven by molecular differences in albumin and AAG resulting in differences in binding affinity.


Assuntos
Anti-Infecciosos , COVID-19 , Ratos , Humanos , Animais , Cães , Coelhos , Ligação Proteica , SARS-CoV-2/metabolismo , Inibidores de Proteases , Especificidade da Espécie , Simulação de Acoplamento Molecular , Proteínas Sanguíneas/metabolismo , Albumina Sérica/metabolismo , Orosomucoide/metabolismo , Antivirais , Inibidores Enzimáticos
17.
Nutrients ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839263

RESUMO

Severe acute malnutrition (SAM) remains a global health concern. Studies on the impact of ready-to-use therapeutic foods (RUTFs) on micronutrient status during SAM treatment are almost nonexistent. The objective was to investigate the impact of RUTFs on the iron and vitamin A status of 6-59-month-old children receiving SAM treatment. Biomarkers of vitamin A status (retinol-binding protein, RBP), iron status (ferritin and soluble transferrin receptor, sTfR), and inflammation (C-reactive protein, CRP, and alpha-1 acid glycoprotein, AGP) were collected at admission and discharge (week 8) during an RUTF effectiveness trial. Vitamin A deficiency was defined as RBP <0.70 µmol/L, low body iron as body iron (BI) <0 mg/kg and deficient iron stores as ferritin <12 µg/L. Data were available for 110 and 75 children at admission and discharge, respectively. There was no significant difference in haemoglobin, ferritin, sTfR, BI or RBP concentrations between admission and discharge. At discharge, BI was 0.2 mg/kg lower, and there was a tendency towards a slightly lower RBP concentration, but the prevalence of vitamin A deficiency was low at admission and discharge (6% and 3%, respectively). The small impact of both RUTFs on improving vitamin A and iron status during SAM treatment calls for further research on the bioavailability of micronutrients to enhance the effectiveness of SAM treatment on micronutrient status.


Assuntos
Anemia Ferropriva , Desnutrição Aguda Grave , Oligoelementos , Deficiência de Vitamina A , Humanos , Criança , Lactente , Pré-Escolar , Ferro/metabolismo , Vitamina A/metabolismo , Anemia Ferropriva/epidemiologia , Deficiência de Vitamina A/epidemiologia , Camboja/epidemiologia , Estado Nutricional , Ferritinas , Orosomucoide/metabolismo , Micronutrientes , Oligoelementos/metabolismo
18.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769193

RESUMO

There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, solubility, lipophilicity, and serum protein binding of these three substances were investigated in detail. The drugs display various degrees of lipophilicity at gastric (pH 2.0) and blood pH (pH 7.4). The determined pKa values explain well the changes in lipophilic character of the respective compounds. The serum protein binding was studied by membrane ultrafiltration, frontal analysis capillary electrophoresis, steady-state fluorometry, and fluorescence anisotropy techniques. The studies revealed that the ester bond in MOLNU is hydrolyzed by protein constituents of blood serum. Molnupiravir and its hydrolyzed form do not bind considerably to blood proteins. Likewise, FAVI does not bind to human serum albumin (HSA) and α1-acid glycoprotein (AGP) and shows relatively weak binding to the protein fraction of whole blood serum. Imatinib binds to AGP with high affinity (logK' = 5.8-6.0), while its binding to HSA is much weaker (logK' ≤ 4.0). The computed constants were used to model the distribution of IMA in blood plasma under physiological and 'acute-phase' conditions as well.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ligação Proteica , Mesilato de Imatinib/farmacologia , SARS-CoV-2/metabolismo , Proteínas Sanguíneas/metabolismo , Orosomucoide/metabolismo , Albumina Sérica Humana/metabolismo , Plasma/metabolismo
19.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677755

RESUMO

Synthesis of anticancer substances and studying their binding abilities towards human serum proteins as carriers are important parts of pharmaceutical and medical sciences development. The presented work is a continuation of studies of quinobenzothiazine derivatives binding with serum proteins. The main aim of this work was a spectroscopic analysis of second from benzothiazinium derivatives salt, 9-fluoro-5-alkyl-12(H)-quino [3,4-b][1,4]benzothiazinium chloride (Salt2), its interaction with carrier proteins, i.e., human serum albumin (HSA), α1-acid glycoprotein (AGP), human gamma globulin (HGG), and the study of protein secondary and tertiary structure changes using spectroscopic techniques (spectrofluorescence, UV-Vis and circular dichroism CD spectroscopy). In order to mimic in vivo conditions, control normal serum (CNS) was used. Using the Klotz method, both binding constants (Ka [M-1]) and the number of binding classes (n) were calculated. In addition, the percentage of displacement of binding site markers from HSA and AGP molecules has been defined. Based on the obtained data, it can be concluded that the main binding protein for Salt2 is AGP. HSA and HGG are also involved in the distribution of the studied substance in the bloodstream. Moreover, Salt2 very slightly interacts with CNS, which can cause strong therapeutic as well as toxic effects. The analysis of CD spectra confirms that there are no changes in the secondary structure of the main binding proteins in the presence of Salt2.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica/química , Dicroísmo Circular , Espectrometria de Fluorescência , Albumina Sérica Humana/metabolismo , Proteínas Sanguíneas/metabolismo , Sítios de Ligação , Orosomucoide/metabolismo , Ligação Proteica , Termodinâmica , Simulação de Acoplamento Molecular
20.
Pharmacol Rep ; 75(2): 423-441, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646965

RESUMO

BACKGROUND: Clinical trials indicate that fentanyl, like morphine, may impair intestinal absorption and thus decrease the efficacy of oral P2Y12 inhibitors, such as clopidogrel, ticagrelor, and prasugrel. However, the ability of fentanyl to directly negate or reduce the inhibitory effect of P2Y12 receptor antagonists on platelet function has not been established. A series of in vitro experiments was performed to investigate the ability of fentanyl to activate platelets, potentiate platelet response to ADP, and/or diminish platelet sensitivity to prasugrel metabolite (R-138727) in agonist-stimulated platelets. The selectivity and specificity of fentanyl toward major carrier proteins has been also studied. METHODS: Blood was obtained from healthy volunteers (19 women and 12 men; mean age 40 ± 13 years). Platelet function was measured in whole blood, platelet-rich plasma and in suspensions of isolated platelets by flow cytometry, impedance and optical aggregometry. Surface plasmon resonance and molecular docking were employed to determine the binding kinetics of fentanyl to human albumin, α1-acid glycoprotein, apolipoprotein A-1 and apolipoprotein B-100. RESULTS: When applied at therapeutic and supratherapeutic concentrations under various experimental conditions, fentanyl had no potential to stimulate platelet activation and aggregation, or potentiate platelet response to ADP, nor did it affect platelet susceptibility to prasugrel metabolite in ADP-stimulated platelets. In addition, fentanyl was found to interact with all the examined carrier proteins with dissociation constants in the order of 10-4 to 10-9 M. CONCLUSIONS: It does not seem that the delayed platelet responsiveness to oral P2Y12 inhibitors, such as prasugrel, in patients undergoing percutaneous coronary intervention, results from direct interactions between fentanyl and blood platelets. Apolipoproteins, similarly to albumin and α1-acid glycoprotein, appear to be important carriers of fentanyl in blood.


Assuntos
Plaquetas , Inibidores da Agregação Plaquetária , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Cloridrato de Prasugrel/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Fentanila/farmacologia , Simulação de Acoplamento Molecular , Agregação Plaquetária , Antagonistas do Receptor Purinérgico P2Y/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...